Продавець Книжковий інтернет-магазин LiderBooks розвиває свій бізнес на Prom.ua 9 років.
Знак PRO означає, що продавець користується одним з платних пакетів послуг Prom.ua з розширеними функціональними можливостями.
Порівняти можливості діючих пакетів
Bigl.ua — приведет к покупке
Кошик
Книжковий інтернет-магазин "Liderbooks"
+380 (96) 196-35-78
+380 (97) 060-75-89

Evolutionary Deep Learning: Genetic algorithms and neural networks. Micheal Lanham

Evolutionary Deep Learning: Genetic algorithms and neural networks. Micheal Lanham

890 ₴

  • В наявності
+380 (96) 196-35-78
  • +380 (97) 060-75-89
    Viber
Evolutionary Deep Learning: Genetic algorithms and neural networks. Micheal Lanham
Evolutionary Deep Learning: Genetic algorithms and neural networks. Micheal Lanham
890 ₴
В наявності
+380 (96) 196-35-78
  • +380 (97) 060-75-89
    Viber
У компанії підключені електронні платежі. Тепер ви можете купити будь-який товар не покидаючи сайту.
Законом не передбачено повернення та обмін даного товару належної якості
Опис
Характеристики
Інформація для замовлення

Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning’s common pitfalls and deliver adaptable model upgrades without constant manual adjustment.

In Evolutionary Deep Learning you will learn how to:

  • Solve complex design and analysis problems with evolutionary computation
  • Tune deep learning hyperparameters with evolutionary computation (EC), genetic algorithms, and particle swarm optimization
  • Use unsupervised learning with a deep learning autoencoder to regenerate sample data
  • Understand the basics of reinforcement learning and the Q-Learning equation
  • Apply Q-Learning to deep learning to produce deep reinforcement learning
  • Optimize the loss function and network architecture of unsupervised autoencoders
  • Make an evolutionary agent that can play an OpenAI Gym game

Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. In this one-of-a-kind guide, you’ll discover tools for optimizing everything from data collection to your network architecture.

About the technology

Deep learning meets evolutionary biology in this incredible book. Explore how biology-inspired algorithms and intuitions amplify the power of neural networks to solve tricky search, optimization, and control problems. Relevant, practical, and extremely interesting examples demonstrate how ancient lessons from the natural world are shaping the cutting edge of data science.

About the book

Evolutionary Deep Learning introduces evolutionary computation (EC) and gives you a toolbox of techniques you can apply throughout the deep learning pipeline. Discover genetic algorithms and EC approaches to network topology, generative modeling, reinforcement learning, and more! Interactive Colab notebooks give you an opportunity to experiment as you explore.

What's inside

  • Solve complex design and analysis problems with evolutionary computation
  • Tune deep learning hyperparameters
  • Apply Q-Learning to deep learning to produce deep reinforcement learning
  • Optimize the loss function and network architecture of unsupervised autoencoders
  • Make an evolutionary agent that can play an OpenAI Gym game

About the reader

For data scientists who know Python.

About the author

Micheal Lanham is a proven software and tech innovator with over 20 years of experience. He has developed a broad range of software applications in areas such as games, graphics, web, desktop, engineering, artificial intelligence, GIS, and machine learning applications for a variety of industries. At the turn of the millennium, Micheal began working with neural networks and evolutionary algorithms in game development.

Table of Contents

PART 1 - GETTING STARTED

1 Introducing evolutionary deep learning

2 Introducing evolutionary computation

3 Introducing genetic algorithms with DEAP

4 More evolutionary computation with DEAP

PART 2 - OPTIMIZING DEEP LEARNING

5 Automating hyperparameter optimization

6 Neuroevolution optimization

7 Evolutionary convolutional neural networks

PART 3 - ADVANCED APPLICATIONS

8 Evolving autoencoders

9 Generative deep learning and evolution

10 NEAT: NeuroEvolution of Augmenting Topologies

11 Evolutionary learning with NEAT

12 Evolutionary machine learning and beyond

Основні
Країна виробникУкраїна
Мова виданняАнглійська
Вид палітуркиМ'який
Тип поверхні паперуМатова
Кількість сторінок360
Рік видання2023
Тип поліграфічного паперуОфсетний
СтанНовий
  • Ціна: 890 ₴

Наскільки вам зручно на сайті?

Розповісти Feedback form banner